
An XML based intermediate language for a compiler

infrastructure

Stephan Bange

December 2, 2005

1



1 Introduction

In this work a XML based intermediate language
for a compiler frontend will be designed and im-
plemented. It will be integrated into a compiler
and will be based on an existing form of interme-
diate language called ICode. This will be done to
grant a clean separation between two of the com-
pilers phases and to make the internal structures of
the ICode more obvious for performance measure-
ments and testing.
The practical result of this work will be an inter-
face that will be able to export the datastructure
ICode into XML and to reimport this XML files
back to ICode. XML was chosen because of its abil-
ity to represent treelike structures like the ICode.
To find inconsistencies we will use XML Schema to
check the structure of the exported ICode against
a schema.

2 Basics

This chapter will describe the basics that will be
used in this work. I will start with a short de-
scription of XML and a more specific description
of the main elements of XML Schema. With XML
Schema I will go into more detail for elements that
I will need in my work. I will describe the general
purpose of intermediate languages and I will give
a short description two other forms of these lan-
guages. As last part of this chapter I will roughly
describe the concepts of the ICode that will be ex-
ported from and imported into XML.

2.1 XML and XML Schema

• Short introduction into XML

• XML Schema

• XML as intermediate language

2.2 Common forms of intermediate

languages

• Purpose of intermediate languages

• N-Tuple Notation

• Abstract Syntax Trees

2.3 The ICode intermediate language

• High level elements (Application, SubAppli-
cation, CodeUnit, Files)

• Element in a file (Functions, Operations, Macros,
... )

• Multi phase optimization

• Elements that are not included in the current
implementation

3 Concepts

The purpose of this work is the design of a XML
based intermediate language that is capable of rep-
resenting the ICode in such completeness that it
can be regenerated from the XML data. Therefore
the general concepts of how things will be repre-
sented in XML will be described here. The inte-
gration into an existing compiler will be done by
an software component called XMLICodeInterface.
This component is separated into two subcompo-
nents namely Import and Export. The concepts
of these two subcomponents will be described here.
The phase of the compiler that deals with the ICode
is split into 3 subphases with each of them having
its own specialized version of the ICode. While a
general schema can be used to check the correct-
ness of all three ICode versions special schemes will
be used to check inconsistencies between the three
different versions.

3.1 XML Representation of the ICode

• What will be represented in the intermediate
language? Why?

• What will not be represented? Why?

• How will things be represented? Why? (at-
tribute vs. content; IDRef vs. element of; ...)

3.2 The schemes

• The general scheme

• Schemes for multi phase optimization

3.3 Concepts of the Interface

• Concepts of the import

• Concepts of the export

4 Implementation

This chapter contains the details of the implemen-
tation and therefore a description of the structure of
the software. The implementation and integration
of the two parts of the software will be explained.

4.1 Structure

Here the class structure of the software will be de-
scribed. Therefore I will explain the concept behind
each class and which functions it should perform. A
general overview will show where and how the In-
terface will be inserted in the existing compiler.



4.2 Import

Before the import of the XML file is done it will
be checked against a schema. This will be done by
the Xerces API and here I will describe how. After
the XML Input passed the test it will be imported
via a Sax event parser. I will explain certain issues
that may occur with some of the imported ICode el-
ements and how they will be solved. The last topic
of this section will be the integration into the exist-
ing compiler. The generation of the ICode elements
will be done by the Factory methods which will be
explained here too.

4.3 Export

To iterate over the treelike structure of the ICode
two common design patterns will be used: the Iter-
ator patter and the Visitor patter. I will describe
their implementation in this chapter. Another topic
will be how the XML Output will be realized and
how the Export will be integrated into the existing
compiler.

5 Results

The first result of this work will be to show that the
integration of an XML based intermediate language
is possible. Further on measurements of the size of
the generated XML documents and of the perfor-
mance of the import and export operations will be
of importance. Since the purpose of this work is
to generate XML for testing purposes some of the
results of this testing will be described here.

5.1 Performance of the implementa-

tion

• Feasibility

• Size of the output

• Performance of the import and export opera-
tions

5.2 Results drawn from the output

6 Outlook

Since the implementation of the work does not han-
dle the whole ICode I will describe the elements that
are missing and how they should be converted into
XML and back. Further I will give a short overview
over other phases of the compiler and explain where
other Interfaces could be inserted.

6.1 Implementation for the whole ICode

• Which elements are missing up to now

• Additional difficulties with the import or ex-
port of these elements

6.2 XML Interfaces for other phases

• Rough structure of the compiler

• Where could the additional interfaces be in-
serted



7 Timeline


